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A similarity solution is found for the distribution of layer thickness in viscous 
source flow down an inclined plane. With this soldion a t  lowest order, an asymp- 
totic expansion in inverse powers of the downstream co-ordinate x allows a small 
correction for upstream influence. A simple experiment confirms the major 
features of the similarity solution: (i) a parabolic cross-stream variation in the 
layer thickness; (ii) spreading of the flow according to an x8 power law; (iii) thin- 
ning of the layer along streamlines like x-F; and (iv) surface velocities which vary 
as the square of the layer thickness. Deviations of the layer-thickness measure- 
ments from the parabolic profile follow the trend predicted by the first-order 
corrections, whereas systematically high measured values are explained 
qualitatively in terms of waves at the free surface. 

1. Introduction 
The problem of slow viscous flow of a thin jet down an inclined plane arose in 

connexion with viscous-dominated bottom currents in the ocean. Classical studies 
of flow down inclined planes (e.g. Batchelor 1967) os of wall jets impinging on 
horizontal planes (e.g. Glauert 1956; Watson 1964) are generally limited to 
two-dimensional or axial symmetry. The analysis of the free flow of a viscous 
jet under gravity involves nonlinear accelerations at some point downstream of 
the source (Clarke 1968). However, in the present case, moderate flow rates, 
high viscosity and the presence of a gently sloping boundary permit the entire 
three-dimensional flow to remain linear. The primary balance is between the 
down-slope component of gravity and the retarding viscous forces. Lateral 
spreading of the flow is caused by the pressure gradient induced by the cross- 
stream variation in layer thickness. The decay of the influence of the source 
conditions suggests that the flow is self-similar in the downstream region. 

I n  $2, a single equation governing the layer thickness in the downstream 
region is derived from the linearized boundary-layer equations. A similarity 
solution is found in 4 3, and two higher terms in the asymptotic expansions of 
the layer thickness and edge streamline are also computed. A simple experiment 
designed to demonstrate the validity of the similarity forms is described in $4, 
and the results are discussed in $5. 

18-2 
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I 

FIGURE 1. Tho co-ordinate system. 

2. Formulation 
A Cartesian co-ordinate system has been chosen with the x and y axes in the 

downstream and cross-stream directions respectively, and the x axis is normal 
to the plane. The origin is located at some arbitrary point along the axis of 
symmetry. The plane is inclined a t  an angle a to the horizontal, x = d(x,y) is 
the upper surface of the fluid, and the edges of the flow are located a t  y = _+ y,(x) 
(see figure 1). Since only the downstream flow will be considered, the natural 
length scale associated with the source dimensions has been eliminated. It is 
standard practice in such cases to form a reference length from the external 
parameters of the problem: the slope s = tana;  viscosity v ;  volumetric flow 
rate Q; and normal component g’ = g cos a of gravity. However, the asymptotic 
nature of the flow may be revealed by scaling the downstream co-ordinate with 
X,, a measure of the distance from the source. The lack of a precise definition 
for X ,  is justified since any length scale selected will be artificial in the sense that 
it cannot appear parametrically in the solution (Van Dyke 1964, p. 132). The 
natural scaling then follows from the definition of the downstream volumetric 
flow rate and the basic viscous-gravitational balance: 

(x, Y, 4 = XS(% 6% Y W ,  
(u, B ,  w) = U,(U, SZ, ySW), 

P = P g ‘ r a x S R  

where 

The dimensionless equations governing the steady flow of a homogeneous in- 
compressible viscous fluid thus become 

TiZ+E@+E2 = 0, (2.1) 

(2.2) 

(2.3) 

(2.4) 

B(uu, + vu, + EZE) = - Pji* + 1 + ;12zz + y2(u,-,_ + S2U2*), 

Ry2(EiiTz + VEg + wWg) = - jiz - 1 + Y ~ [ W , - ~  + y 2 ( W g ,  + 6 “$3 w )] , 

R(ZZ, + vv, + WEE) = - 2)@ + vgz + y2( Z,, + 
- 

where R = (s3&*/g’YGx:1)+. 
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Next, the boundary-layer approximation is invoked by neglecting terms of 
quadratic order in the cross-stream aspect ratio ( y2  l),  and the flow is con- 
sidered jet-like in the sense that the downstream scale far exceeds that in the 
cross-stream direction (a2 g I). The equations are also linearized by the assump- 
tion of a low Reynolds number (w Q 1) .  Note that each of these assumptions is 
valid for sufficiently large X,. 

Under these conditions the pressure field is hydrostatic. I f  the pressure com- 
ponents induced by surface tension at  Z = Z ( E ,  a) are ignored, the momentum 
equations reduce to - 

G-- 22 = - 1, g-- 22 = d-  2/' (2 .5 ) ,  (2.6) 

To the same order of approximation, the required boundary conditions are 
(i) the no-slip condition at  the rigid surface, i.e. 

U = V = W = Q  a t  Z = O ,  (2 .7)  

(ii) the zero stress and kinematic conditions at  the free surface 

(where surface tension gradients and curvature terms of order y 2  have been 
neglected) and (iii) the symmetry and edge conditions 

- 
d,=O at g = O  (2.10) 

and Z = o at 3 = ye(@. (2.11) 

Successive integrations of (2 .5 )  and (2 .6 )  with respect to Z, using boundary 
conditions (2.7) and (2.8), yield parabolic velocity profiles: 

- 
u = Z(d - $2) (2.12) 

- -  
(2.13) 

A similar integration of the continuity equation (2.1) leads to a second-order 
nonlinear partial differential equation governing the distribution of layer thick- 
ness in the downstream region: 

- and = -d,z(d-L- 22)- 

(2.14) 

Furthermore, the confinement of the flow in the lateral direction implies that 
the total downstream volumetric flow rate is constant: 

(2.16) 

3. Analysis 
3.1. Similarity solution 

An asymptotic similarity solution to (2.14) with boundary conditions (2.10) 
and (2.11), subject to the constraint (2.15), is sought. If the form of the similarity 
solution is assumed to be 

a(% I) = f (5)  G(v) ,  where 7 = h(3) 5, (3.1) 
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then(2.15)givesf= A(aZ+b)’andh = (uiE+b)gwith2q+r = -1.Theconstantb 
results from the arbitrary location of the origin of co-ordinates, and may be 
eliminated by suitable redefinition. This serves to position the origin a t  the 
eSfective point source for the flow. The value of r ]  may be normalized to one on 
the edge streamline, which implies that 

(3.2) 

The downstream flux condition then provides the missing relation between the 
exponents: 

ye(%) = l/h(Z) = (u3)”. 

and gives q = - $ and r = - +. Free constants in the equation governing G may 
be eliminated by choosing A = $a, hence 

with boundary conditions 

where a prime denotes differentiation with respect to q. The flux condition then 
reduces to 

GG” + 3Gl2 + 37c’ + G = 0, (3-3) 

G’(0) = 0, G(1) = 0, (3.41, (3.5) 

Recognizing that (3.3) is equivalent to [(G’+y) G7’ = 0, two integrations 
using (3.4) and (3.5) yield a parabolic profile for a: 

G(7) = &(1 -y2).  (3.7) 

(3 .8)  

The resulting expression for the layer-thickness distribution in dimensional 
form is 

Substitution into the flux condition then gives a value for a: 

u = (5.74/4.32)* = 6.9346. 

where c = &a, 7 = y/ye and 
y&) = (&v/q’s*)3 (ax)+. (3.10) 

Note that, as anticipated, the a.rtificia1 length scale X, does not appear in the 
result. The streamlines for the flow are lines of constant 7 since 

(3.11) 

Thus the solution predicts that the streamlines will spread according to an a3 
power law and that the layer thickness will diminish along streamlines like x-f 
to compensate for the spreading while maintaining constant downstream flux. 
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3.2. Asymptotic theory 

In  order to facilitate comparison between the similarity solution and the accom- 
panying experiment (see $j 4), it is useful to compute some higher order terms in 
the full asymptotic expansion of the solution. The form of the expansion in 
inverse powers of 3 is 

(3.12) 

where c = &a. Since the edge of the flow is a free streamline, its position must 
also be expanded in the same manner: 

re = 1+S2(a~)-+qe,+(a~)h&+ .... b (3.13) 

The second term in each expansion represents a correction to the similarity 
solution which incorporates terms of order S2 in both the equations of motion 
and the flux condition. Under the transformation r = q2, the equation governing 
G, takes the form of an inhomogeneous hypergeometric equation whose com- 
plementary solutions are singular at  r = 1.  Therefore, only the particular solution 
is physically acceptable and is found to be a fourth-order polynomial 

@%!lj) = ~+[(1-q2)+P(aZ)-~G1(q)+B(a3)*HA(q)+ C ...I, 

G,(q) = -$c2(3-Zq2-49q4). (3.14) 

The corresponding perturba>ion to the edge streamline comes from the boundary 
condition applied a t  q z  = 1, 

re, = +G,(l) = ;c2. (3.15) 

The third term in each expression constitutes a departure from the asymptotic 
expansion in a2 represented by the fist two terms. According to  Riley (1961), 
there exist, in problems such as this, disturbance eigensolutions which enter the 
full asymptotic expansion of the solution a t  some 0rder.t With the form of the 
perturbation defined by (3.12), B is an arbitrary amplitude of the eigenfunction 
HA and h is a typical eigenvalue. Again using the transformation r = yz, the 
general solution for H,, is found to consist of hypergeometric functions: 

H,,(q) = DF(a,/3; 4; q2) + EyG(a+ &,p+ Q; 8; q2),  (3.16) 

where ai-,8 = $ and a/3 = ;A. For symmetric disturbances, E = 0, and the 
eigenvalues may be determined from the behaviour of HA near q2 = 1, where 

The finiteness of lIA(l) requires that /3 (or a)  be a negative integer ( p  = -n),  so 

h = -4n(2n+5) (n = 1,2 ,3 ,  ...). (3.17) 

The lowest eigenvalue (n = 1, h = - 1) gives 

H-, = 1 - 772, = - 3B, (3.18) 

t The author is grateful to a referee, Dr E. J. Watson, for pointing this out, and pro- 
viding the initial steps in the analysis. 
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where D has been set equal to one without loss of generality. It is easily verified 
that H-, satisfies the perturbation flux condition identically; that is, the dis- 
turbance involves no net contribution to the downstream volumetric flow rate. 
It is also worth noting that antisymmetric eigensolutions enter the expansion 
a t  higher order (O(Z-7)) and will therefore be neglected. 

Substitution of the correction fields into the asymptotic expansion yields 
dimensional expressions for the layer thickness and edge streamline : 

where c = 7 = y/y,, and B = SX, remains undetermined. Note that the first 
symmetric eigensolution dominates asymptotically the correction to first order 
in P. Also, the eigenfunctian correction is found to be proportional t o  the 
derivative of the basic solution with respect to x and is therefore equivalent to 
shifting the origin by an amount - 7 B / a  upstream. 

4. Experimental results 
A simple experiment was designed t o  verify the predictions of the similarity 

solution. A viscous silicone oil (Dow Corning 200 Fluid, 500 c.s.), whose properties 
are given in table 1 below, was emitted from a $in. tube at the upper end 
of a Plexiglas plane inclined at  cc = 10.5" (8 = 0.185). The measured flow 
rate Q = 8-8 t- 0-2 cm3/s was maintained by a constant driving head (see 
figure 2 ) .  The cross-stream layer-thickness profile was measured at a point 9.4 em 
downstream from the tube orifice using a needlepoint micrometer. Several 
thickness measurements were also made at  various points along the symmetry 
axis. 

Flow patterns were recorded photographically by multiple exposure of small 
pieces of electrical tape advected along the free surface. A strobe light, pulsed 
a t  100r.p.m., exposed the black flake against a 0-lin. grid which lay beneath 
the Plexiglas surface. The edge streamline was also clearly depicted on these 
photographs by the shadow it cast on the graph below. A typical exposure 
lasted 6 s and showed the flake at 10 different points in the flow. 

Substituting the values of the experimental parameters into the basic similarity 
solution, (3.9) and (3.10), results in explicit formulae for the layer thickness and 
edge streamline in the downstream region: 

( 1  - r2) em and ye = 3-854& om, 
0.5889 a=- 
x-;- 

where x and y are measured in centimetres and the origin of co-ordinates is at  
the mouth of the tube. The streamline patterns, as measured from the photo- 
graphs, are displayed in figure 3. The average deviation of all internal streamlines 
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FIGURE device, 

Property Value Source 

Viscosity ( U) 
Surface tension (cr) 
Density ( p )  

4.86 f 0.05 cma/s at 72 OF 
21.1 +_ 0.8 dynelcm at 77 O F  

0.972 & 0.001 gm/cm3 at 77 "F 

Direct measurement 
Publishedt and measured value 
Publishedt and measured value 

t Dow Corning Electronics Notebook, p. 82. 

TABLE 1. Properties of silicone oil (Dow 200 Fluid) 

from the x+ power law is 0.071 em, whereas the disagreement a t  selected points 
on the edge streamline is O.lOcm on the average. However, these discrepancies 
lie within the bounds of experimental error ( ? 0.254 em). The data for both the 
edge and several internal streamlines were normalized with respect to convenient 
reference values and are replotted in figure 4 to depict the spreading according 
to the & power law more clearly. 

In  order to verify the expression for the surface velocity, its downstream 
component ud. may be integrated over the known exposure time and compared 
with the observed downstream displacement of the surface flake. Using the 
dimensional formula (3.9) for the layer thickness the expression for the down- 
stream component of surface velocity was derived: 

(4.3) 

Noting that 7 = y/y, is constant along the streamlines, integration yields an 
expression for the final downstream position xl of the flake in terms of its initial 
co-ordinates (xi, y i )  and the elapsed time At, i.e. 

The accuracy of this formula is limited mainly by observational errors in the 
initial co-ordinates and the small uncertainties in the flow rate Q and the viscosity 
v. A comparison between predicted and measured downstream displacements is 
given in table 2 below. In  all cases the values agree to within the bounds of 
experimental error. 
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FIGURE 3. Streamline data. Solid and dashed curves are observed edge andinternal stream- 
lines. Theory: A, ye = 3.854&; 0, y~ = (zi/zl)s yl, where (at, yi) and (zz, yz) are the end 
points of the internal streamlines. 

According to the asymptotic solution (4.1) and (4.2), the characteristic dimen- 
sions of the cross-stream profile a t  xo = 9.4 cm are 

do = &(x,, 0) = 0.428 cm and ye0 = y,(xo) = 10.07 cm, 

as compared with measured values of 0.450 and 10.41 cm. The theoretical and 
measured profiles are compared in figure 5 .  The average deviation between the 
two results is 0.025 cm, which represents 5.6 % of the centre-line value. The 
measurements appear to be systematically higher than the predicted values, 
with the maximum discrepancy of 0-05cm occurring at the edge of the flow. 
Despite the errors in magnitude, the layer-thickness variation is very nearly 
parabolic, as demonstrated by a comparison of normalized data and theory in 
figure 6. The downstream variation in layer thickness along the symmetry axis 
is shown to follow the x 3  thinning rate in figures 7 and 8. The correspondenoe 
between the measurements and theory steadily improves with increasing down- 
stream distance, and again the agreement between normalized data and theory 
is better than 3 yo. However, as with the thickness profile data, systematically- 
high measured values are again evident. Although this trend may be removed by 
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FIGURE 4. Streamline spreading by x$ power law. (a) Selected internal streamlines: 0, 
normalized data, yr/yl ; - - - , theory, y,/yz = (xJxt)$. (6 )  Edge streamline: 0, normalized 
data ye/yeo, yao = 10.41 cm.; ~ , theory, ye/yeo = (x/xo)$, yeo = 10.07 cm, x0 = 9.4 cm. 

suitable normalization, the absolute errors remain unexplained by the estimated 
experimental error, & 0.01 em. 

Apart from experimental error, disagreement between the lowest order theory 
and measured layer-thickness profile may be attributed to the fact that the flow 
is not truly asymptotic a t  xo = 9-4 em. Evaluation of the scaling parameters for 
X ,  = xo reveals that y2 ( =  0.00743) and R ( =  0.00619) are quite small, whereas 
the magnitude of a2 ( = 0.217) implies that sizeable deviations are to  be expected 
owing to upstream influences. The non-asymptotic modifications to the thickness 
profile at x = xo may be calculated from (3.19): 

where B is the unknown amplitude of the eigenfunction correction. Using 
observeddiscrepanciesand (4.5) to predict an average value of B/axo (= 0.02973), 
the correction field is compared with the measured deviations from the basic 
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Stream- 
line 

1 
2 
3 
4 
5 
6 
7 
8 

xi (em) 

15.74 f 0.38 
12.70 k 0.38 
13-21 +_ 0.38 
20.83 f 0.38 
14-22 f 0.38 
18.03 f 0.38 
20.37 f 0.38 
11.30 f 0.38 

Yi (cm) 
5.85 f 0.38 
4.82 f 0-38 
3.10 f 0.38 
0.51 f 0.38 
4.57 f 0.38 
0.05 0.38 
2.46 f 0.38 
6.65 f 0.38 

Yd (em) 

12.56 k 0.25 
11-45 f 0.25 
11.65 f 0.25 
14.16 f 0.25 
12.02 f 0.25 
13.31 & 0.25 
14-03 f 0.25 
10.90 & 0.25 

At ( s )  

5.4 
5.4 
4.8 
6.0 
6.0 
5.4 
5.4 
5.4 

Theory 
xz (c1-4 

24.67 f 1.27 
22-93 f 1-28 
24.62 f 0.06 
35.52 2 0.75 
26*10+ 1.30 
31.77 2 0.64 
33.01 i 0.90 
17.62 k 1.44 

TABLE 2. Integrated surface velocities 

Experiment 
XI (em) 

23.67 f 0.38 
22.10f 0.38 
24.26 f 0.38 
35.10 0.38 
25.02 f 0.38 
32.63 f 0.38 
32-80 f 0-38 
17.40 f 0.38 

0.5 

Y (em) 

PIGURE 5 .  Layer-thickness profile a t  x = 9.4 cm. A, measured values; --, theory, 
d = do[l - (y/yeo)2], do = 0-428 cm, ye0 = 10.07 cm. 

1 - ( W O )  

FIGURE 6. Parabolic cross-stream thickness variation. A, normalized data; --, theory, 
(1 -d/do)  = (y/yJ2, do = 0-428 om, yeo = 10.07 cm. 
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FIGURE 7. Downstream thickness variation along symmetry axis. 
0, measured values ; ~ , theory, d = 0~5889~-B.  

solution in figure 9. Although the cross-stream variation of the correction profile 
is reproduced quite well by the theory, the measured corrections are systematically 
high by 0.0188 cm on the average. In  addition, the perturbed position of the edge 
streamline is predicted to be 

which compares favourably with the observed value of 10.41 cm. 
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FIGURE 9. First-order corrections to layer-thickness profile a t  z,, = 9.4 om. A ,  measured 
deviations from lowest order theory ; -, eigensolution plus first-order similarity correc- 
tion, Ad = 0.428[(B/axO)  ( 1  - 7r2) - 0.00586(3 - 2r2  - 49q4)] ,  B /axo  = 0.0297. 

5. Discussion 
The analytical forms for the similarity solution, (3.9) and (3.10), were derived 

on the assumption that the origin of co-ordinates was located at  the effective 
source for the downstream flow. In  practice, the ambiguity of this ill-defined 
concept is compounded, since the real flow does not originate from a distinct 
point, but rather from an orifice of finite dimension. The apparent purpose of the 
eigenfunction correction is to compensate for the uncertainty introduced by 
positioning the origin at  the physical source. The eigenfunction amplitude B 
derived from the layer-thickness observations a t  xo corresponds to a shift of the 
origin downstream by 1.96 em. Since this determination of B is made from data 
contaminated by experimental error, its reliability may be questioned. However, 
the correction fields resulting from other trial values of B do not reflect the 
observed variation as well. Moreover, because of the constraint of the flux 
condition it would be impossible for any value of B to explain systematically- 
high measurements. 

The theory fails to account for surface tension, but its neglect may be justified 
by order-of-magnitude arguments. If surface tension gradients are neglected, 
a scale analysis indicates that surface tension effects are felt only over very short 
distances 

(a/pg’)* = 0.15 cm. (5.1) 

Irregularities of this order were distinctly observed along the edge streamline, 
where the influence of surface tension is expected to be most pronounced owing 
to interaction with the solid plane. A rigorous treatment of surface tension in 
the present context leads to a singular perturbation problem in which the 
surface tension effects are measured by the small parameter e = w/pg’PXz ( N 

for X, = xo), which represents the ratio of the surface tension length scale to the 
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cross-stream scale. However, a detailed analysis is beyond the scope of the present 
investigation. 

Experimental error is responsible for most of the disagreement between 
measurement and theory. The deviations of the observed streamline trajectories 
from the & power law may be attributed to inaccuracies in reading the positions 
of the surface flakes and edge streamline from the photographs. These positional 
errors also contribute to the uncertainty in the predicted surface velocities and 
downstream displacements. For the thickness measurements, the flexure of the 
micrometer arm when the needlepoint touched the solid plane tended to produce 
systematically high values. However, the estimated magnitude of this effect, 
0-01 em, cannot fully account for the observed discrepancies in figure 9. Apart 
from uncertainties in the parameter values, it is thought that the remaining dis- 
agreement might be related to the presence of waves at  the free surface. Such 
waves would be produced by minor variations in the flowrate or other irregularities 
associated with the orific conditions. According to a stability criterion for two- 
dimensional flow of depth do (Yih 1965, p. 180) all small waves are damped in 
the downstream region. This downstream damping effect is suggested by the 
steadily improving agreement between measurement and theory in figure 7. 
Nevertheless, the waves may have had sufficient amplitude at  xo to touch the 
needlepoint above the mean level. However, quantitative assessment of these 
effects appears impossible, and they must be considered as part of the ‘noise’ 
in the measurement. 

In  summary, the self-similar character of source flow down an inclined plane 
has been demonstrated. The asymptotic layer-thickness profile is found to be 
parabolic, the flow spreads according to an x+ power law and the layer thins along 
streamlines like x 3 .  Moreover, the integrated surface velocity along streamlines 
accurately predicts the observed downstream displacement of surface flakes. 
The sum of an eigenfunction correction, whose amplitude is determined from the 
experimental data, and the first-order similarity correction is in close agreement 
with the observed deviations from the lowest order profile. Finally, a qualitative 
explanation in terms of waves at the free surface has been offered for the sys- 
tematically high values of the measured thickness profile. 
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